Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Stomatology ; (12): 162-167, 2022.
Article in Chinese | WPRIM | ID: wpr-935843

ABSTRACT

Objective: To evaluate the effect of adding a geometric feature on the accuracy of digital impressions obtained by intraoral scanners for implant restoration of edentulous jaw quantitatively. Methods: A dentiform model of the maxilla of completely edentulous arch with 6 implant analogs+scan bodies (No. 1-6) was selected as the reference model. Without geometric feature, the dentiform model was scanned by dental model scanner and repeated for 5 times as true value group. Before and after adding the geometric feature, the same operator used intraoral scanner A (Trios 3) and B (Aoralscan 2) to scan the dentiform model with the same scanning path. Each type of intraoral scanner scanned 10 times and ".stl " datas were obtained. The results were imported into reverse engineering software (Geomagic Studio 2015). The linear distances of center point of upper plane between sacn body 1 to 6 was calculated, denoted as D12, D13, D14, D15 and D16. Trueness was the absolute value subtracted from the measured value of the intraoral scanner groups and true value; precision was the absolute value of pairwise subtraction of the measured values in the intraoral scanner groups.The smaller the value, the better the accuracy or precision.With or without the feature, all scan data were statistically analyzed, and the effect of adding geometric feature on the trueness and precision of the two intraoral scanners were evaluated. Results: As for intraoral scanner A, with the feature in place, significant differences were found in D14, D15, D16 for tureness(t=2.66, 2.75, 2.95, P<0.05); the trueness for D16 decreased from (101.9±47.1) μm to (49.6±30.3) μm. On the other hand, with features on the edentulous area, the precision was significantly increased in D15 and D16 (U=378.00, 672.00, P<0.05); the precision for D15 decreased from 40.8 (45.1) μm to 13.1 (17.0) μm. As for intraoral scanner B, the trueness of D12, D13 and D14 after adding geometric features was significantly better than before (t=3.02, 2.66, U=22.00, P<0.05). With feature on the edentulous area, the trueness for D13 decreased from (116.6±41.2) μm to (70.8±35.5) μm. There was no statistical significance in the trueness of D15 and D16 with or without geometric feature (P>0.05), however, the precision of D15 and D16 after adding geometric feature was significantly better than before (U=702.00, 489.00,P<0.05). The precision of D16 decreased from 112.5 (124.7) μm to 35.9 (85.8) μm. Conclusions: The use of geometric feature in edentulous space improves the trueness and precision of the different principle intraoral scanners tested.


Subject(s)
Computer-Aided Design , Dental Implants , Dental Impression Technique , Imaging, Three-Dimensional , Models, Dental
2.
Journal of Peking University(Health Sciences) ; (6): 129-137, 2020.
Article in Chinese | WPRIM | ID: wpr-941978

ABSTRACT

OBJECTIVE@#To provide a reference for using intraoral scanners for making clinical diagnostic dentures of edentulous jaws by comparing the accuracy of three intraoral scanners for primary impression and jaw relation record of edentulous jaws.@*METHODS@#This study contained 6 primary impressions of the edentulous patients. Each of the impressions consisted of the maxillary primary impression, the mandibular primary impression and the jaw relation record. For each of them, a dental cast scanner (Dentscan Y500) was used to obtain stereolithography (STL) data as reference scan, and then three intraoral scanners including i500, Trios 3 and CEREC Primescan were used for three times to obtain STL data as experiment groups. In Geomagic Studio 2013 software, trueness was obtained by comparing experiment groups with the reference scan, and the precision was obtained from intragroup comparisons. Registered maxillary data of the intraoral scan with reference scan, the morphological error of jaw relation record was obtained by comparing jaw relation record of the intraoral scan with the reference scan. Registered mandibular data with jaw relation record of intraoral scan and the displacement of the jaw position were evaluated. Independent samples t test and Mann-Whitney U test in the SPSS 20.0 statistical software were used to statistically analyze the trueness, precision and morphological error of jaw relation record of three intraoral scanners. The Bland-Altman diagram was used to evaluate the consistency of the jaw relationship measured by the three intraoral scanners.@*RESULTS@#The trueness of i500, Trios 3 and CEREC Primescan scanners was (182.34±101.21) μm, (145.21±71.73) μm, and (78.34±34.79) μm for maxilla; (106.42±21.63) μm, and 95.08 (63.08) μm, (78.45±42.77) μm for mandible. There was no significant difference in trueness of the three scanners when scanning the maxilla and mandible(P>0.05). The precision of the three scanners was 147.65 (156.30) μm, (147.54±83.33) μm, and 40.30 (32.80) μm for maxilla; (90.96±30.77) μm, (53.73±23.56) μm, and 37.60 (93.93) μm for mandible. The precision of CEREC Primescan scanner was significantly better than that of the other two scanners for maxilla (P<0.05). Trios 3 and CEREC Primescan scanners were significantly better than i500 scanner for mandible (P<0.05). The precision of the i500 and Trios 3 scanners for mandible was superior to maxilla (P<0.05). The upper limit of 95% confidence intervals of trueness and precision of three scanners for both maxilla and mandible were within ±300 μm which was clinically accepted. The morphological error of jaw relation record of the three scanners was (337.68±128.54) μm, (342.89±195.41) μm, and (168.62±88.35) μm. The 95% confidence intervals of i500 and Trios 3 scanners were over 300 μm. CEREC Primescan scanner was significantly superior to i500 scanner(P<0.05).The displacement of the jaw position of the three scanners was (0.83±0.56) mm, (0.80±0.45) mm, and (0.91±0.75) mm for vertical dimension; (0.79±0.58) mm, (0.62±0.18) mm, and (0.53±0.53) mm for anterior and posterior directions; (0.95±0.59) mm, (0.69±0.45) mm, and (0.60±0.22) mm for left and right directions. The displacement of the jaw position of the three scanners in vertical dimension, anterior and posterior directions and the left and right directions were within the 95% consistency limit.@*CONCLUSION@#Three intraoral scanners showed good trueness and precision. The i500 and Trios 3 scanners had more errors in jaw relation record, but they were used as primary jaw relation record. It is suggested that three intraoral scanners can be used for obtaining digital data to make diagnostic dentures and individual trays, reducing possible deforming or crack when sending impressions from clinic to laboratory.


Subject(s)
Humans , Computer-Aided Design , Dental Impression Technique , Imaging, Three-Dimensional , Jaw, Edentulous , Models, Dental
SELECTION OF CITATIONS
SEARCH DETAIL